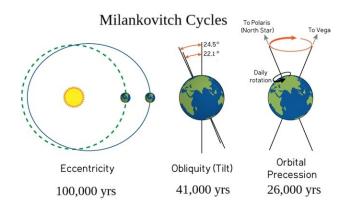
Milankovitch Cycles of Long-Term Climate

by Potluri Rao In Seattle ©2018 (CC BY 4.0)

An analysis of DNA samples of Indian populations revealed many inconsistencies in the current version of human history. The big picture of the geology of India over 100,000 years provided us a consistent and coherent image of Hindus who lived in India for over 100,000 years. Hindus were Asian Homo Sapiens that voluntarily moved out of Africa. They had nothing to do with the African or European Homo Sapiens.

There were three cycles of long-term climatic change of 26,000, 41,000, and 100,000 years each. Each cycle has four seasons similar to the annual seasons from summer to winter.

The 41,000-year cycle reversed the direction of Indian monsoon winds every 20,000 years, causing fertile land to become wasteland and vice versa. It is the monsoon cycle.


The 100,000-year cycle reversed the direction of sea levels every 50,000 years causing, the Persian Gulf, Sunda land, and Indus Fan to submerge. It is the glacial cycle.

A reconstruction of Indian geology based on the interaction between the climatic cycles provided us a migration path from Africa to China. The DNA samples matched the migration path. It is an empirically validated hypothesis that is both necessary and sufficient. The Asian Homo Sapiens were the DNA C and F. The C moved on to China, and the F lived only in Peninsular India.

Milankovitch cycles are the long-term, periodic changes in Earth's orbit and axial tilt that influence the amount of solar radiation reaching different parts of the planet.

Eccentricity (100,000-year cycle): This refers to the shape of Earth's orbit around the sun. The orbit varies from being nearly circular to more elliptical. The more elliptical the orbit, the greater the variation in solar radiation received between Earth's closest and farthest points from the sun.

Obliquity (41,000-year cycle): This is the change in the tilt of Earth's rotational axis.

The angle of the tilt varies between 22.1° and 24.5°. A greater tilt increases the severity

www.RaoInSeattle.com Geological facts of the seasons, with warmer summers and colder winters. A smaller tilt reduces seasonal differences and is thought to encourage the growth of ice sheets by allowing winter snow to persist through cooler summers at high latitudes. The ice sheets of the Himalayas follow the 41,000-year cycle, not the 100,000-year cycle that causes the European glaciers.

Precession (26,000-year cycle): This is the wobble of Earth's axis, like a spinning top. This wobble changes the orientation of the axis and alters the timing of the seasons relative to Earth's position in its orbit. For example, precession determines which hemisphere is closer to the sun during the summer, affecting the intensity of its seasonal changes.

Solar radiation distribution: The combined cycles alter the distribution of solar energy over the Earth's surface. Changes in summer sunlight at high northern latitudes are considered a critical factor for triggering ice ages, as landmasses in the Northern Hemisphere are more sensitive to temperature changes than oceans.

Ice-albedo feedback: When summer insolation is low, ice sheets and snow can build up at high latitudes. This increases Earth's albedo (reflectivity), causing more sunlight to be reflected back into space and further cooling the planet. Conversely, higher insolation melts ice, and the darker land and water absorb more heat, leading to warming.

Greenhouse gas effects: As ice sheets grow or melt, changes in ocean temperature and circulation can cause atmospheric carbon dioxide levels to either decrease or increase, further amplifying the cooling or warming trend.

www.RaoInSeattle.com Geological facts Milankovitch cycles.pdf page 2